Markdown cheatsheet

Table Of Contents

[ClickMe](https://htdphuc.github.io)

<https://htdphuc.github.io>

ClickMe

https://htdphuc.github.io

List

1. Sequence entry 1

2. Sequence entry 2

3. Sequence entry 3 3
  1. Sequence entry 1

  2. Sequence entry 2

  3. Sequence entry 3

* Unordered entry 1

* Unordered entry 2

* Unordered entry 3
  • Unordered entry 1

  • Unordered entry 2

  • Unordered entry 3

- [x] Task list 1
- [ ] Task list 2
  • Task list 1
  • Task list 2

Emphasize

~~Strikethrough~~

**With black**

*Italics*

Strikethrough

With black

Italics

# H1
## H2
### H3
#### H4
##### H5
###### H6

Tips: # Add spaces to the middle of the title.

Table

| HEADER1 | HEADER2 | HEADER3 | HEADER4 |
| ------- | :------ | :-----: | ------: |
| content | content | content | content |
HEADER1 HEADER2 HEADER3 HEADER4
content content content content
  1. :—– indicates left alignment
  2. :—-: indicates medium alignment
  3. —–: indicates right alignment

Code block

print 'Hello, World!'
  1. list item1

  2. list item2

    print 'hello'
    

Image

![favicon](/favicon.ico)

favicon

Anchor point

* [Table of Contents](#catalog)

Emoji

:camel:
:blush:
:smile:

:camel: :blush: :smile:

Footnotes

This is a text with footnote[^1].

This is a text with footnote1.

mermaid

<div class="mermaid">
sequenceDiagram
    Alice-->>John: Hello John, how are you?
    John-->>Alice: Great!
</div>

sequenceDiagram Alice-->>John: Hello John, how are you? John-->>Alice: Great!

Sequence

Andrew->VietNam: Says Hello
Note right of VietNam: China thinks\nabout it
VietNam-->Andrew: How are you?
Andrew->>VietNam: I am good thanks!

Flowchart

st=>start: Start
e=>end
op1=>operation: My Operation
sub1=>subroutine: My Subroutine
cond=>condition: Yes
or No?
io=>inputoutput: catch something...

st->op1->cond
cond(yes)->io->e
cond(no)->sub1(right)->op1

Mathjax

When $$(a \ne 0)$$, there are two solutions to $$(ax^2 + bx + c = 0)$$ and they are

$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

[^1]: Here is the footnote 1 definition.

When \((a \ne 0)\), there are two solutions to \((ax^2 + bx + c = 0)\) and they are

\[x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\]
  1. Here is the footnote 1 definition. 

Search

    Table of Contents