Table Of Contents
- Hyperlinks
- List
- Emphasize
- Header
- Table
- Code block
- Image
- Anchor point
- Emoji
- Footnotes
- mermaid
- Sequence
- Flowchart
- Mathjax
Hyperlinks
[ClickMe](https://htdphuc.github.io)
<https://htdphuc.github.io>
List
1. Sequence entry 1
2. Sequence entry 2
3. Sequence entry 3 3
-
Sequence entry 1
-
Sequence entry 2
-
Sequence entry 3
* Unordered entry 1
* Unordered entry 2
* Unordered entry 3
-
Unordered entry 1
-
Unordered entry 2
-
Unordered entry 3
- [x] Task list 1
- [ ] Task list 2
- Task list 1
- Task list 2
Emphasize
~~Strikethrough~~
**With black**
*Italics*
Strikethrough
With black
Italics
Header
# H1
## H2
### H3
#### H4
##### H5
###### H6
Tips: #
Add spaces to the middle of the title.
Table
| HEADER1 | HEADER2 | HEADER3 | HEADER4 |
| ------- | :------ | :-----: | ------: |
| content | content | content | content |
HEADER1 | HEADER2 | HEADER3 | HEADER4 |
---|---|---|---|
content | content | content | content |
- :—– indicates left alignment
- :—-: indicates medium alignment
- —–: indicates right alignment
Code block
print 'Hello, World!'
-
list item1
-
list item2
print 'hello'
Image
![favicon](/favicon.ico)
Anchor point
* [Table of Contents](#catalog)
Emoji
:camel:
:blush:
:smile:
Footnotes
This is a text with footnote[^1].
This is a text with footnote1.
mermaid
<div class="mermaid">
sequenceDiagram
Alice-->>John: Hello John, how are you?
John-->>Alice: Great!
</div>
sequenceDiagram
Alice-->>John: Hello John, how are you?
John-->>Alice: Great!
Sequence
Andrew->VietNam: Says Hello
Note right of VietNam: China thinks\nabout it
VietNam-->Andrew: How are you?
Andrew->>VietNam: I am good thanks!
Flowchart
st=>start: Start
e=>end
op1=>operation: My Operation
sub1=>subroutine: My Subroutine
cond=>condition: Yes
or No?
io=>inputoutput: catch something...
st->op1->cond
cond(yes)->io->e
cond(no)->sub1(right)->op1
Mathjax
When $$(a \ne 0)$$, there are two solutions to $$(ax^2 + bx + c = 0)$$ and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
[^1]: Here is the footnote 1 definition.
When \((a \ne 0)\), there are two solutions to \((ax^2 + bx + c = 0)\) and they are
\[x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\]-
Here is the footnote 1 definition. ↩